FROM PHOTONS TO MAXWELL

This demo shows how to obtain a classical plane wave from a photon wave function. Let there be an electromagnetic wave traveling in the z direction with the following electric field vector.

$$\mathbf{E} = \begin{pmatrix} A_x \sin(kz - \omega t) \\ 0 \\ 0 \end{pmatrix}$$

The corresponding photon wave function is

$$\psi_n(z,t) = \exp(in(kz - \omega t))$$

where n is the number of photons. The electric field operator is

$$\hat{E}_x = iC(a - a^{\dagger})$$

where C is a conversion constant. Apply the electric field operator to the wave function ψ_n to obtain

$$\hat{E}_x \psi_n = iC(a\psi_n - a^{\dagger}\psi_n)$$
$$= iC\left[\sqrt{n}\psi_{n-1} - \sqrt{n+1}\psi_{n+1}\right]$$

Recall that the observed electric field E_x is an eigenvalue of \hat{E}_x , that is

$$\hat{E}_x \psi_n = E_x \psi_n$$

Divide $\hat{E}_x \psi_n$ by ψ_n to obtain the observed electric field E_x .

$$E_x = \frac{E_x \psi_n}{\psi_n}$$

$$= iC \left[\frac{\sqrt{n} \psi_{n-1} - \sqrt{n+1} \psi_{n+1}}{\psi_n} \right]$$

$$= iC \left[\frac{\sqrt{n} \exp(i(n-1)(kz - \omega t)) - \sqrt{n+1} \exp(i(n+1)(kz - \omega t))}{\exp(in(kz - \omega t))} \right]$$

The exponentials in the numerator and denominator cancel, hence

$$E_x = iC \left[\sqrt{n} \exp(-i(kz - \omega t)) - \sqrt{n+1} \exp(i(kz - \omega t)) \right]$$

Note that $\sqrt{n} \approx \sqrt{n+1}$ for large n. For the large n approximation we have

$$E_x = iC\sqrt{n} \left[\exp(-i(kz - \omega t)) - \exp(i(kz - \omega t)) \right]$$

Recall that $2\sin(\alpha) = i[\exp(-i\alpha) - \exp(i\alpha)]$. Hence

$$E_x = 2C\sqrt{n}\sin(kz - \omega t)$$

which is equivalent to the x coordinate of **E** with $A_x = 2C\sqrt{n}$. Note that the amplitude of the electric field is proportional to the square root of the number of photons.

```
-- www.eigenmath.org/from-photons-to-maxwell.txt
psi(n) = exp(i * n * (k*x - omega*t))
psi1 = psi(1)
-- define operators
a(psi) = conj(psi1) * sqrt(i / omega * psi * d(psi,t))
adag(psi) = psi1 * sqrt(i / omega * psi * d(psi,t) + psi^2)
Ehat(psi) = i * C * (a(psi) - adag(psi))
-- compute E for 1 million photons
N = 1000000
E = Ehat(psi(N)) / psi(N)
E = subst(-i*C*sqrt(N)*psi1, -i*C*sqrt(N+1)*psi1, E) -- large n approx
-- show E
E
-- compare
E - 2 * C * sqrt(N) * expsin(k*x - omega*t)
```